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Sorting is removing ‘inversions’.

In an array sorted by (!) we have
" ! < < # [ ] ! [ ]( )i j i j n A i A j, 0 . If the array isn’t
completely sorted, it will contain inversions. That is,
$ ! < < % [ ] > [ ]( )i j i j n A i A j, 0 .

Sorting can be seen as a process of removing those
inversions, by exchanging (permuting) elements.

Suppose that x<->y is an ‘exchange’ instruction,
which swaps the contents of two variables or array
elements.

Here’s insertion sort again:

for (int i=1; i<n; i++) {
  for (int j=i; j!=0 && A[j-1]>A[j]; j--)
    A[j-1]<->A[j];
}

Each step of the inner loop removes exactly one
inversion.
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This program always does n comparisons
A[j-1]>A[j], plus, for each inversion it finds, an
exchange A[j-1]<->A[j] and another comparison.

In general, for an array of size N containing I
inversions, it takes time proportional to N I+ .

And thus insertion sort is O N( ) in a sorted array
(because I = 0), and ‘runs quickly’ (Weiss) on an
‘almost sorted’ array (one in which I is small).

Weiss (p226) shows that the number of inversions in
an array is at most N N &( )1 2, and on average is
N N &( )1 4. This explains why insertion sort is O N 2( )
both in the worst case and on average.

Weiss’s argument doesn’t work if the array contains duplicate
elements. Why not?
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Shellsort: a better insertion sort.

Named for its inventor, Donald Shell. Really.

Insertion sort does a fixed amount of work to remove
each inversion.

Shell sort can remove several inversions with one
exchange.

Its running time is proved to be O N 3
2( ) in the worst

case, and seems on average to be O N 5
4( ) (Weiss

p230). It might even be as good as O N 7
6( )

But nobody is quite sure. Really.
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Consider the ‘h-chains’ (h ' 1) of A n0 1.. &[ ]:

A A h A h0 2[ ] [ ] [ ], , ,...

A A h A h1 1 2 1[ ] +[ ] +[ ], , ,...

A A h A h2 2 2 2[ ] +[ ] +[ ], , ,...

...

A h A h A h&[ ] &[ ] &[ ]1 2 1 3 1, , ,...

The chains are disjoint.

disjoint: share no elements. Technical language.

We can sort them, if we wish, separately.

Why should we wish? Well:

it is a lot quicker to sort h little h-chains than
one large array (h N h N h× ( ) =2 2 );

each re-arrangement in a chain has a chance of
removing a lot of inversions between the
elements moved and elements in other chains.

Together these give us the magic.
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We sort the h-chains with large spacing h, then we
reduce h a bit and do it again, then reduce again and
sort again, ... , then finally sort with h = 1 on the
whole array.

Here’s a partial description of the algorithm.
STARTINGGAP and NEXTGAP are parameters, which I will
discuss later:

for (int h = STARTINGGAP; h>0; h=NEXTGAP) {
  for (int i = h; i<n; i++) {
    for (int j=i; j>=h && A[j]>A[j-h]; j-=h)
      A[j-h]<->A[j];
  }
}

The elements in A h0 1.. &[ ] are each the first in their
chains, so we start with i h= . Then each value of i in
h h h n, , ,...,+ + &1 2 1 is a position in an h-chain, and
we insertion-sort an element into that chain (lines 3
and 4).
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We get different efficiency, depending on we write in
place of STARTINGGAP and NEXTGAP. It’s subtle, and we
have to rely on experts for information.

If you see yourself as a computer science professor one day,
this might be a point to start! Try following up the references
in Weiss, and try reading some of the proofs for yourself.

Weiss (p230) points out that if we write

for (int h=n/2; h>0; h=h/2)

then there is a possible worst case which gives O N 2( )
performance.

He then states that if you write a loop which starts
with n ÷ 2 and divides by 2 at each step, but adds 1 if
you get an even answer, you get O N 3

2( ) in the worst
case and O N 5

4( ) in the average case.

for (int h=n/2; h>0; h=h/2, h=h-h%2+1)

At present there is no proof of the average-case result. It’s an
experimental result.

If you divide by 2.2 instead of 2, you get even better
performance – O N 7

6( ) – and nobody knows why! The
algorithm is on p229.
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How can it work so well?

An array in which the h-chains are sorted, for some
value of h, is h-sorted. So an array might be 5-sorted,
or 3-sorted, or 17-sorted, or all the above.

Fact about Shellsort: when you take an h-sorted array
and j-sort it ( j h< ), you finish up with something that
is both j-sorted and h-sorted.

I think I can see why this is, but I’m not going to put it on a
slide yet.

The effect is to produce a final sort which is just
insertion sort (because h = 1), which is fast because
most of the inversions have already gone.

Note that the formulæ STARTINGGAP and NEXTGAP have to be
designed  to produce a sequence h h hk k, ,...,&1 0 which ends with
h0 1= , otherwise the sort won’t complete properly.
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The performance of Shellsort.
In the next batch of slides there is a health warning about the
kind of graphs shown on the next few slides. You have to
consider ‘constants of proportionality’ before you can
compare different algorithms, not just the magnitude of the
formulae in an O ...( ) judgement.

But it’s still interesting to see how the different formulæ
behave.

N 3
2 (Shellsort worst case) grows much more quickly

than N Nlg  (we shall soon see some fancy sorting
algorithms which run in N Nlg  time):
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But you have to go to quite large numbers before
N Nlg  is smaller than N 5

4 (Shellsort average time,
using halving to odd numbers):
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After that point N 5
4 grows more quickly than N Nlg ,

so the latter’s advantage grows.
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But look at N 7
6 !
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Even at a value of one hundred million, N 7
6 (Shellsort

average time, using divide by 2.2) hasn’t overtaken
N Nlg  yet:
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It happens eventually, as it must, somewhere round
about half a billion:
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What these graphs tell us is that Shellsort may be a serious
rival to the N Nlg  algorithms which we shall consider later.

But experiment rules everything. To see which is faster, we
shall have to conduct program races.

Actually, you shall conduct the races,
in the lab.


